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Abstract

We describe a simple model for the temperature dependence of the exchange

bias and related effects that result from coupling a ferromagnetic thin film to

a polycrystalline antiferromagnetic film. In this model, an important source

of temperature dependence comes from thermal instabilities of the antiferro-

magnetic state in the antiferromagnetic grains, much as occurs in superpara-

magnetic grains. At low enough temperatures, the antiferromagnetic state

in each grain is stable as the ferromagnetic magnetization is rotated and the

model predicts the unidirectional anisotropy that gives rise to the observed

exchange-bias loop shift. At higher temperatures, the antiferromagnetic state

remains stable on short time scales, but on longer time scales, becomes unsta-

ble due to thermal excitations over energy barriers. For these temperatures,

the model predicts the high field rotational hysteresis found in rotational

torque experiments and the isotropic field shift found in ferromagnetic reso-

nance measurements.
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I. INTRODUCTION

The response of a ferromagnetic thin film to applied fields can be changed by coupling

it directly to an antiferromagnet. The most well known change is a shift of the hysteresis

loop,1 often called exchange bias. This loop shift is of interest in magnetic devices, because

the coupling effectively “pins” the soft magnetic layers in the low fields used in devices.2

Because these devices may be required to operate at temperatures on the order of 100 ◦C

above room temperature or greater, the temperature dependence of exchange bias systems

is quite important.

The coupling between the antiferromagnet and the ferromagnet leads to many other

changes in the properties of exchange bias systems, which have been reviewed in Ref.

3. Rotational torque,4–7 ferromagnetic resonance,9–14 Brillouin light scattering,15,16 ac

susceptibility,17 and anisotropic magnetoresistance18 have been used to measure the

anisotropy of these systems. They all show the unidirectional anisotropy that gives rise

to the hysteresis loop shift, but also show effects indicative of hysteretic processes as the

ferromagnetic magnetization is rotated. Many of these measurements are done in fields large

enough to saturate the ferromagnetic magnetization, indicating that the hysteretic processes

must be occurring in the antiferromagnet. However, different techniques measure different

aspects of these hysteretic processes.

In rotational torque measurements, the torque on a sample is measured as the sample

is rotated in a magnetic field. In unbiased films, if the field is large enough to saturate

the sample moment, then the magnetization follows the field reversibly. In this case, the

torque integrates to zero when the sample is rotated through 360◦. However, in exchange

bias systems, the torque does not integrate to zero, even in very large applied fields.4–8 This

behavior indicates that parts of the system are behaving irreversibly. When these parts of

the system change configuration as the field is rotated, work is done and dissipated in the

system. The high field rotational hysteresis is then the total work done on rotation of the

magnetization through 360◦.
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Ferromagnetic resonance experiments14 on biased films relative to unbiased films show

an isotropic shift of the resonance field superimposed on orientation-dependent shifts from

other anisotropies. This shift can be modeled as coming from a rotatable anisotropy,19,20 an

anisotropy that has a minimum that “follows” the steady state magnetization direction.

The unidirectional anisotropy, the high field rotational hysteresis, and the isotropic fer-

romagnetic resonance field shift can be explained in a single model which accounts for the

thermal stability of the antiferromagnetic state on different times scales. This behavior is

closely related to superparamagnetism. A superparamagnetic particle is in a well defined

state when probed on short enough times scales, but not when probed on long enough time

scales. The crossover between the two regimes depends strongly on temperature because

the instability of the state arises from thermal transitions over some energy barrier. In

our model, an analogous dependence on temperature and time scale exists in the finite and

independent grains of the antiferromagnet.

For example, the apparently oxymoronic concept of a rotatable anisotropy is explained

by the difference in behavior on different time scales. While the state of a part of the system

may be stable on one time scale it may be unstable on a longer time scale. When we say

that the state of a part of an antiferromagnetic grain is stable on some time scale, we mean

that the sublattice magnetization direction is constant. Rotatable anisotropy is explained

by the state of some of the antiferromagnetic grains being stable on the time scale of the

microwave excitation, on the order of 10−9 s to 10−10 s, but being unstable on the time scale

of measuring the ferromagnetic resonance signal at different field directions, on the order

of 1 s to 102 s. As the ferromagnetic magnetization direction is rotated between different

measurements, these grains that are unstable on the long time scale change states. These

new states have energy minima that tend to be closer to the new magnetization direction

than they would be in the absence of instability.13,14 This change in the directions of the

minima associated with individual grains gives rise to the rotatable anisotropy.14 Thus, the

isotropic field shift of the ferromagnetic resonance is determined by the the grains that

change their state on the 1 to 102 s time scale.21
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One difficulty with models for exchange-biased systems is that there are enough unknown

properties to make it is possible to fit almost any model to any particular experimental

result. To address this difficulty, it is important for models to predict the behavior of

enough measurements, with as much variation as possible that the adjustable parameters be

overconstrained rather than underconstrained. In a previous paper,21 we developed a model

to describe both the unidirectional anisotropy and the hysteretic processes in polycrystalline

exchange-bias systems. In this paper, we try to widen the predictions of our model by using

it to predict the temperature dependence of the unidirectional anisotropy that leads to

the loop shift, the isotropic field shift found in ferromagnetic resonance, and the high field

rotational hysteresis found in rotational torque experiments.

II. MODEL

Our model for a polycrystalline exchange bias system consists of a ferromagnetic film

coupled to independent antiferromagnetic grains.21,22 The ferromagnetic magnetization is

assumed to be both saturated by and rotated by an external field. The antiferromagnetic

grains are coupled to the ferromagnet by the direct exchange coupling between the interfacial

spins of the ferromagnet and the interfacial spins of the antiferromagnetic grains. The

coupling is frustrated to a large degree because, due to disorder at the interface, both

sublattices of the antiferromagnet are present at the interface of each grain.23 Statistical

variations in the fraction occupied by each sublattice lead to a net coupling.24,25

In a previous paper,21 we included spin flop coupling26 at the interface. While simple

estimates suggest that spin-flop coupling is strong in such systems,26 and there is strong

evidence for it in some systems,27 it does not lead to a unidirectional anisotropy.21,28 In fact,

spin-flop coupling reduces the unidirectional anisotropy that is due to coupling to the net

moment of the antiferromagnet. We believe that the simple estimates of the importance of

spin-flop coupling are not correct for the systems that have been investigated by ferromag-

netic resonance and rotational torque and we do not include it in the present calculations.
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For a more complete description of the interfacial coupling, see Ref. 21.

As the ferromagnetic magnetization direction, M̂FM, is rotated, the magnetization direc-

tion near the interface, m̂(0), in each antiferromagnetic grain adjusts itself to minimize the

combination of the exchange energy at the interface and the partial domain wall energy23,29

in the antiferromagnet due to its deviation from its easy axis direction, û,

Eint = −NJnetM̂FM · m̂(0) +
Na2σ

2
[1− m̂(0) · (±û)] , (1)

whereN is the number of spins at the interface of that grain, a2 is the area of the interface per

spin, Jnet is the effective interfacial coupling per spin for that grain, and σ is the domain wall

energy per unit area in the antiferromagnet, which we assume has uniaxial anisotropy. The

ferromagnetic magnetization is assumed to be saturated, so there is no partial domain wall

in the ferromagnet.30 While we will treat the case where the ferromagnetic magnetization,

M̂FM, is rotated in the interface plane, none of the unit vectors in Eq. (1), are restricted

to lying in that plane. We choose to assign the antiferromagnetic magnetization direction,

m̂(0), to the direction of the sublattice magnetization for the sublattice that predominates

at the interface. In the absence of coupling to the ferromagnet, there are two degenerate

ground states in the antiferromagnet. One ground state has one sublattice magnetization

along û and the other has it along −û. These two ground states give two configurations

that are local energy minima,21 one for each ground state of the uncoupled antiferromagnet

E(±) =
Na2σ

2

(
1−

[
1 + 2rM̂FM · (±û) + r

2
]1/2)

, (2)

where r = 2Jnet/σa
2, is the ratio of the direct coupling energy to half a domain wall energy.

The minimum energy configurations have m̂(0) lying in the plane defined by û and M̂FM.

In our model, the distributions of the characteristics of the antiferromagnetic grains are

random. We assume that the distribution of easy axis orientations is isotropic, not only in

the plane, but in all three dimensions, and that the distributions of the number of spins

at the interface from each antiferromagnetic sublattice is statistical. The latter assumption

leads to a distribution of effective interfacial coupling energies, NJnet = Jint|(N1 − N2)|,
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where N1 and N2 are the number of spins from each of the two sublattices exposed at the

interface of that grain, where Jint is the interfacial exchange coupling strength for each spin

pair. The absolute value comes from choosing the dominant sublattice for each grain as the

reference sublattice for that grain. The assumptions, that N is large, and that N1 and N2

are statistically distributed, lead to a distribution of coupling strength ratios

Φ(r, r0) =
2

πr0
exp

(
−
r2

πr02

)
, (3)

where the mean value is

r0 =
2Jint
σa2

√
2

πN
. (4)

In real samples, the grain size N will also be distributed in some way. For clarity, we compute

the behavior for different grain sizes rather than averaging over a distribution.

We consider exchange bias systems in which the Curie temperature of the ferromagnet

is much greater than the Néel temperature of the antiferromagnet, which is usually, but not

always,31 the case. Thus, we assume that the properties of the ferromagnet are temperature

independent. Also, since the proximity of the ferromagnet is likely to induce a moment in the

antiferromagnet close to the interface, we assume that the coupling at the interface is also

temperature independent. We include two contributions to the temperature dependence.

The first source of temperature dependence that we include in the model is the domain wall

energy in the antiferromagnet. We assume that σ = σ0(1− T/TN)5/6, where TN is the Néel

temperature, based on σ ∝
√
AAFKAF, and the approximations that the antiferromagnetic

moment mAF ∝ (TN−T )1/3, the anisotropy constant, KAF ∝ m3AF for uniaxial anisotropy,
32

and the exchange stiffness constant AAF ∝ m2AF as indicated approximately by analogy

to spin-wave dispersions in some ferromagnets.33 This approximation is crude, but gives a

simple form for the temperature dependence such that domain walls become easy to create

as the Néel temperature is approached.

The second source of temperature dependence in our model is analogous to

superparamagnetism34 in small ferromagnetic particles. We assume that for certain tem-

peratures, thermal fluctuations can lead to switching of the antiferromagnetic state in the
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grains.22 Two differences between our model and the standard models for superparamag-

netism are 1) we consider antiferromagnetic grains, which only couple weakly to external

magnetic fields (we assume no coupling), and 2) we assume that the columnar grains are

longer than domain walls in the antiferromagnet. This means that the mechanism for switch-

ing the state of the grains is domain wall nucleation and motion, rather than coherent rota-

tion. This assumption is clearly only appropriate for grains larger than a certain size. For

smaller grains, a coherent rotation model could be used.22

We assume that the antiferromagnetic order on short time scales sets in at the bulk Néel

temperature, but that it can be thermally switched in the finite-sized grains on some longer

time scale. In this paper, we assume that this switching is slow compared to the inverse of

the ferromagnetic resonance frequencies and depending on the temperature, the switching is

either fast or slow compared to measurement times. For small enough grains, there may be

a temperature range in which the switching is even fast on the time scale of ferromagnetic

resonance. In this case, which we have not treated, we expect the switching to contribute

to an increase in the resonance linewidth.

There is a great deal of evidence for relaxation on laboratory time scales in exchange-bias

systems. Early measurements showed a training effect,6 in which the hysteresis loop changes

as it is cycled repeatedly. More recent measurements35 show that if the sample is held with

the ferromagnetic magnetization in the hard direction of the unidirectional anisotropy, the

size of the bias decreases with a time scale on the order of hours. Furthermore, as the

temperature is increased, the time constant decreases.

To determine the thermal switching rate, we make a simple model for the barrier between

the two states described by Eq. (2). This model is based on a picture in which switching

nucleates at the interface and proceeds by propagation of a domain wall out the other end

of the antiferromagnetic grain. In this picture the “barrier state” consists of the final state

plus a domain wall far from the interface. The energy of this state is an estimate of the true

barrier energy. Thus, starting from the (+) state, the barrier to the (−) state is
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∆E =
Na2σ

2

([
1 + 2rM̂FM · û+ r2

]1/2
−
[
1− 2rM̂FM · û+ r2

]1/2)
+Na2σ. (5)

A more realistic model for the barrier would require a very detailed simulation of the switch-

ing of a grain. The simple model we have chosen has several features we expect of a more

realistic model. The energy scale is set by the domain wall energy in the antiferromagnet,

which is appropriate for grains larger than a domain wall length. Also, the barrier is higher

for states which have more favorable coupling to the ferromagnet.

At a temperature T , the probability of remaining in an initial state for a period of time

t is

P (t) = exp [−νt exp (−∆E/kBT )] . (6)

For νt = 109 s−1 × 1 s and several values of Na2σ/kBT , this probability is shown in Fig. 1

as a function of the in-plane rotation angle of the magnetization, φ. For most parameter

choices, the probability is close to one for a range of angles and then makes a rapid transition

to close to zero for other angles. These rapid transitions suggest the further approximation

that this probability be chosen to be either zero or one with the border between the two

regimes given by

∆E/kBT = log νt ≈ 20 (7)

Thus, if ∆E > 20kBT , the grain is assumed to be stable in the initial state, and if ∆E <

20kBT it is unstable. If the barrier from the other state, 2Na2σ − ∆E < 20kBT as well,

then the grain is unstable in both states.

Approximating the state of each grain as either stable or unstable is closely related

to the critical angle description of instability described in Ref. 21. That paper described

zero temperature instability due to the barrier going to zero when a partial domain wall

is wound up past a certain angle in the antiferromagnet. The instability at the critical

angle leads to switching behavior similar to that described here. In this paper, there are

several differences. Here, the model chosen for the barrier is always non-negative, so there
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is essentially no instability at T = 0. In addition, the model used here allows instability in

both states. This means that on the time scale of the measurement, t ≈ 1 s, some grains

flip between both states, occupying both with appropriate thermal probabilities.

Other models for the barrier can be treated in a straightforward extension of the results

presented in this paper. The difficulty is determining sensible models. In some systems there

will be grains with energy barriers that go to zero for some directions of the magnetization,

as described in our previous paper.21 In this case, the effect of instabilities described below

will persist down to T = 0 K. In the model of the present paper, where essentially all energy

barriers are finite, all grains become stable at T = 0 K.

In the approximation used in this paper, we classify grains as either stable, partially

stable, or unstable as a function of temperature and applied field direction. A stable grain

has large enough barriers from both the (+) and (−) states that it will remain in either state

on the time scale of the measurement. An unstable grain has small enough barriers from

both states that the state will flip from one state to the other on a time scale fast compared

to the measurement time. A partially stable grain will stay in one state, but not the other.

For a particular grain, the different regions of this behavior are illustrated in Fig. 2.

At low enough temperatures, the grain is stable in either state for all magnetization

angles. If the antiferromagnetic order is set in the presence of a particular magnetization

direction, this grain will contribute to the unidirectional anisotropy that gives rise to the

loop shift.

At intermediate temperatures, the grain goes though regions of stability and regions of

partial stability as the magnetization is rotated. Both states of the grain become unstable

for particular field directions. As the magnetization is rotated, the grain will reach the point

of instability and the state of the grain will switch. Since the grain “forgets” its initial

state when it switches, it ceases to contribute to the unidirectional anisotropy, but instead

contributes to the rotatable anisotropy. For angles where the grain is stable, it contributes

an anisotropy that has a minimum in one direction. When it switches between states, it

favors one of two (opposite) directions depending on the direction of the magnetization and
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its history. Since the state switches to a state that is lower in energy, the grain, on average,

has an energy minimum closer to the direction of the magnetization than in the absence

of switching. This leads to an anisotropy that “follows” the magnetization, a rotatable

anisotropy. In addition, a finite energy is dissipated when the state of the grain switches.

This energy dissipation makes a contribution to the high field rotational hysteresis equal to

the difference in energy between the two states when one state becomes unstable.

At higher temperatures, the magnetization angles at which the states become unstable

approach each other and eventually cross. Now, the grain goes through regions of partial

stability and regions of instability. At this point, no energy is dissipated as the magnetiza-

tion is rotated. In regions of instability, the two states are in thermal equilibrium. In regions

of partial stability, only one state is stable. Therefore, the energy of the system is a single-

valued function of the magnetization direction, so the magnetization is rotated reversibly,

and there is no contribution to the high field rotational hysteresis. There is still a contri-

bution to the rotatable anisotropy, because the state that is lower in energy has a greater

thermal weight. At still higher temperature, the grain is unstable for all magnetization

directions, but still contributes to the rotatable anisotropy.

As the temperature increases further, the domain wall energy decreases and goes to zero

at the Néel temperature. Thus, the value of kBT/Na
2σ, the y-axis in Fig. 2, increases faster

than linearly with temperature.

Starting from high temperature and going to low temperatures, the behavior described

above can be understood in terms of kinetic barriers to establishing equilibrium. At high

temperatures, but still below the Néel temperature, each antiferromagnetic grain is in a well-

defined state on short times scales, but on longer time scales, there is thermal equilibrium

between the two possible states. As the temperature is lowered, the kinetic barrier between

the two states increases, and the time it takes to establish equilibrium increases. Eventually,

this time becomes comparable to the measurement time scale, and the grain becomes stable

in the state it was in when the equilibration time became greater than the measurement

time.
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The contributions to the unidirectional anisotropy and the rotatable anisotropy are

determined from the curvature of the energy surface as a function of the angle of the

magnetization.14,21 We consider a sample with a steady-state ferromagnetic magnetization

in the (1,0,0) direction and consider small deviations around that direction. The curvature

of the energy with respect to these deviations then determines the effective anisotropies in-

duced in the ferromagnet by the coupling to the antiferromagnet. For a grain with an easy

axis in the direction (sin θu cosφu, sin θu sinφu, cos θu), and a magnetization near the (1,0,0)

direction given by (cos ε cos δ, sin ε sin δ, sin ε), where ε and δ are the small angles associated

with the microwave excitation, the angle between the magnetization and the easy axis is

determined by

M̂FM · û ≈ sin θu cosφu + δ sin θu sin φu + ε cos θu −
ε2 + δ2

2
sin θu cosφu. (8)

This quantity enters the energy, Eq. (2). To determine the appropriate curvatures, differen-

tiate the energy and weight the two minima by their occupation probability, and take the

limit that δ and ε go to zero.

We assume that the occupation probability of a state is independent of ε and δ because

the microwave excitation occurs on a time scale fast compared to changes in occupation.

Then, the second derivative of the free energy with respect to ε is

d2F

dε2
= P (+)

d2E(+)

dε2
+ P (−)

d2E(−)

dε2
, (9)

where P (±) is the probability of being in the respective state. Similar forms hold for the

second derivative with respect to δ and the cross term. If one state of the grain is stable,

the probability of being in a state is either zero or one. If both states are unstable, the

probabilities are given by the thermal occupation probabilities

P (±) =
e−βE

(±)

e−βE
(+) + e−βE(−)

, (10)

where we have β = 1/kBT

From the energy surface curvatures and the work done when switching, we compute the

unidirectional anisotropy, the rotatable anisotropy, and the high field rotational hysteresis by
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averaging over the assumed distributions of grain orientations and interfacial net moments.

As a function of temperature, we first determine the domain wall energy in the antiferromag-

net. From that we determine the distribution of the ratio between the interfacial coupling

and the domain wall energy. Then we numerically integrate over the distributions to deter-

mine the quantities of interest. The averaged curvatures are related to the the appropriate

anisotropies by computing the size of the anisotropy that gives the same curvature.

III. RESULTS

If we assume that all of the grains are stable; i.e. there are no thermally induced changes

in configuration, then the rotatable anisotropy and the high field rotational hysteresis are

both zero. The temperature dependence of the unidirectional anisotropy, σex, comes from

the temperature dependence of the domain wall energy. Its value is found by integrating the

contribution for a particular value of the parameter r, given in Ref. 21, over the distribution

of values, Φ, given in Eq. (3)

Eq. (3)σex =
σ0
2

(
TN − T

TN

)5/6 ∞∫
0

drΦ

(
r, r0

(
TN − T

TN

)−5/6)
F1(r), (11)

where we have

F1(r) =



r
2

(
1− r2

5

)
r < 1

1
2

(
1− 1

5r2

)
r > 1

, (12)

and r0 defined in Eq. (4). The behavior is illustrated in Fig. 3 for several values of the ratio

of r0.

The parameter, r0, is one of the two dimensionless parameters that characterize the

model. It is the ratio of the average interfacial coupling to the domain wall energy at zero

temperature. As seen in Fig. 3, it determines the saturation of the bias at low temperatures.

Once the domain wall energy becomes greater than typical interfacial coupling energies, this

bias saturates. If the zero temperature wall energy is lower than the interfacial coupling

energy, the unidirectional anisotropy will continue to increase as the temperature is lowered.
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When thermal instability in the grains, as modeled by the barriers in Eq. (5), is included

in the model, the other dimensionless parameter of importance is

b =
Na2σ0
kTN

. (13)

This parameter is the ratio of the domain wall energy (times the area of the grain) divided

by the thermal energy at the Néel temperature. When this ratio is large, the different states

of the grain become stable very quickly as the temperature is lowered below the Néel tem-

perature. When b is small, the grain does not contribute to the unidirectional anisotropy

until significantly below the Néel temperature. As seen in Fig. 4, this parameter largely

determines the reduction of the blocking temperature compared to the Néel temperature.

In this model, this reduction comes about from the analogy of the behavior of the antifer-

romagnetic grains to superparamagnetism. Grains smaller than a certain size are thermally

unstable until below the blocking temperature.

In addition to the reduction of the blocking temperature as the parameter b decreases,

and the saturation of the unidirectional anisotropy as r0 decreases, Fig. 4 shows several other

interesting features. First, the rotatable anisotropy becomes non-zero at the Néel tempera-

ture, above the blocking temperature. All grains contribute to the rotatable anisotropy. As

the temperature decreases, the rotatable anisotropy increases with the increasing domain

wall energy until the blocking temperature. Then, as grains become stable they start con-

tributing to the unidirectional anisotropy and not to the rotatable anisotropy. The rotatable

anisotropy decreases. In this model, in which all the energy barriers are non-negative, all

grains are stable at T = 0, and the rotatable anisotropy goes to zero.

Only grains that are partially stable contribute to the high field rotational hysteresis.

Thus, this quantity is also zero above the blocking temperature. It increases as the tem-

perature is lowered because the increasing stability of the grains allows them to be wound

up further in the energetically unfavored state. More energy is dissipated when the grain

switches state. Eventually, the grains become stable, and the high field rotational hysteresis

goes to zero at T = 0.
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The temperature dependence of the unidirectional anisotropy shown in Fig. 4 for various

parameters spans the range of what is seen experimentally. While a set of parameters

can be chosen to agree with any particular experiment, especially if a distribution of grain

sizes is assumed, such agreement is not very satisfactory. However, the predictions of the

temperature dependence of the high field rotational hysteresis and the rotatable anisotropy

should constrain the model significantly when these results become available and lead to a

much more satisfactory test of the model.

A distribution of grain sizes and hence blocking temperatures can explain the “memory”

effects found in some systems.36 If there is a distribution of blocking temperatures, each

grain will start to contribute to the unidirectional anisotropy at a different temperature.

If the ferromagnetic magnetization is changed as the sample is cooled, different grains will

contribute to unidirectional anisotropies in different directions. It would be interesting to

measure the rotatable anisotropy or the high field rotational hysteresis on these samples to

see if they are consistent with a distribution of blocking temperatures. If there are blocking

temperatures very close to zero temperature, the rotatable anisotropy should persist to zero

temperature.

One point that deserves to be discussed is the general agreement between experimental

results on polycrystalline and single crystal samples, and what aspects of this model might

apply to single crystal samples. In some single crystal samples,27,37 there is evidence for

the importance of the motion of domain walls that are perpendicular to the sample and

move in the sample plane. At high temperatures, these domain walls can be mobile on long

time scales and fixed on short time scales. As the temperature decreases, the pinning of the

domain walls becomes more important and the domain walls only move on much longer time

scales. The motion and thermal pinning and unpinning of domain walls perpendicular to

the interface are more complicated than the model we have treated for the motion of domain

walls in independent grains. However, in both cases there are regions of the antiferromagnet

that are unstable due to domain wall motion through those regions. This similarity may

account for the general agreement found in experimental studies of these systems.
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IV. SUMMARY

In this paper, we describe a model for the temperature dependence of polycrystalline

exchange-bias systems. The predictions of this model should prove useful when measure-

ments of the temperature dependence of several properties of the same samples become

available. The temperature dependence comes from that of the domain wall energy in the

antiferromagnetic grains and from thermally activated switching of the antiferromagnetic

grains. These latter processes are analogous to superparamagnetism in small ferromagnetic

particles. Assuming a isotropic distribution of easy axis directions, and a statistical dis-

tribution of the net moment at the interface of the grains, we compute the unidirectional

anisotropy that gives rise to the loop shift, a rotatable anisotropy that gives rise to an

isotropic shift of the resonance field, and a rotational hysteresis measured in torque experi-

ments in high field.

The thermal activation of the switching causes there to be a blocking temperature that

is below the Néel temperature. Above this temperature, the antiferromagnetic order in the

grains is not stable and no unidirectional anisotropy develops. On the time scale of the

resonance frequency in ferromagnetic resonance measurements, the order is stable. Thus

the coupling to the antiferromagnetic grains gives rise to an effective anisotropy for the fer-

romagnet that rotates as the ferromagnetic magnetization is rotated on a measurement time

scale of order 1 s. Below the blocking temperature, the antiferromagnetic order first be-

comes stable in one configuration, but not the other. For these grains, the antiferromagnetic

order is no longer a single valued function of the ferromagnetic magnetization directions,

but depends on its history. The energy dissipated gives rise to the high field rotational hys-

teresis. At lower temperatures, the antiferromagnetic order becomes stable, and the grains

contribute to the unidirectional anisotropy and not the rotatable anisotropy or the high field

rotational hysteresis.

The saturation of the unidirectional anisotropy at low temperatures is determined by

the ratio of the average interfacial coupling energy to the zero temperature domain wall

15



energy. If the domain wall energy is the smaller of the two, it determines the size of the

unidirectional anisotropy. If the interfacial coupling energy is the smaller of the two, it

determines the unidirectional anisotropy, which saturates at low temperature due to the

assumed temperature independence of the interfacial coupling at low temperatures.
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FIG. 1. Probability for the order of an antiferromagnetic grain to remain in a particular state

for t = 1s as a function of angle as the magnetic field is rotated around (0,0,1). The different curves

are for different values of Na2σ/kBT , 100.0 (heavy solid line), 50.0 (solid line), 25.0 (dashed line),

and 12.5 (dotted line). For this grain, the ratio r = 1.0, and the easy axis is in the (0.9, 0.0, 0.44)

direction.

20



0.00

0.05

0.10

0 π 2π
φ

Stable

Partially
Stable

Unstable

U
ni

di
re

ct
io

na
l

an
is

ot
ro

py

R
ot

at
io

na
l H

ys
te

re
si

s
R

ot
at

ab
le

 A
ni

so
tr

op
y

kT

Na  σ2

FIG. 2. Stability of order in an antiferromagnetic grain as a function of magnetic field angle

and the ratio of temperature to domain wall energy. At each angle there are two configurations

for the antiferromagnetic order. At low temperature, the order is stable in both states (stable),

at high temperature in neither state (unstable), and at intermediate temperatures stable in one

state or the other depending on field angle (partially stable). Bars to the right of the plot show

the temperature ranges over which this grain contributes to different processes. The parameters

for this grain are the same as in Fig. 1.
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FIG. 3. Unidirectional anisotropy as a function of temperature assuming all grains are stable.

The various curves are labeled by different values of the dimensionless parameter, r0 (see Eq. (4)).
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FIG. 4. The temperature dependence of the unidirectional anisotropy (solid lines), rotatable

anisotropy (dashed lines), and rotational hysteresis (dotted lines), each an energy per area (E/A)

in units of the domain wall energy σ for various values of the dimensionless parameters, r0 and b

(See Eqs. (4) and (13)).
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